

Frailty

- Cause incompletely understood
- Decrease in physiologic reserve
 - Accentuated over the normal age-related decline in physiologic reserve
 - Failure of homeostatic mechanisms
 - Multiple systems
 - Neuromuscular, neuroendocrine and immunologic dysfunction
- Increased vulnerability to stressors

Frailty

- A clinical syndrome
- Manifestations
 - Unintentional weight loss and/or loss of muscle mass (sarcopenia)
 - Weakness
 - Fatigue
 - Inactivity
 - Decreased dietary intake
 - Common signs: sarcopenia, balance & gait abnormalities, osteopenia, malnutrition

Precipitants

- Progressive age-related decline in physiologic reserve coupled with a trigger event
 - Examples: acute illness, injury, adverse event, immobility
 - Incomplete recovery
 - Failure to regain premorbid state
 - Stepwise decline and/or susceptibility to subsequent triggers

Identifying Frailty

- Numerous instruments exist
 - 2019 systematic review identified 51 (Faller et al.)
 - Variable in what measured and length
 - No gold standard
- Two most widely accepted approaches
 - Physical frailty phenotype
 - Frailty index

Physical Frailty Phenotype

- Developed by Fried and colleagues (2001)
- Frailty: clinical syndrome including unintentional weight loss, weakness, slow walking speed and low physical activity
- Operationalization
 - Weight loss > 10 lbs (4.54 kgs) in past 12 months
 - Grip strength in lowest 20% based on gender and BMI
 - 15-feet walking time in slowest 20% by gender and height
 - Low kcal expenditure/week (men < 383; women < 270)
 - Weakness self-reported exhaustion

Physical Frailty Phenotype

- Using physical frailty phenotype to diagnosis frailty
 - No deficits robust; no frailty
 - 1-2 deficits prefrail
 - 3 or more deficits frail

Frailty Index

- Rockwood and colleagues (2005)
- Frailty: the cumulative effect of individual deficits the greater the number the more likely to be frail
- Originally identified 70 deficits
 - Counted number present to calculate frailty index
 - The proportion of measured deficits present

Frailty Index

- Subsequent studies have reduced and adapted the number of countable deficits
 - Have included various symptoms, signs, abnormal laboratory values, diseases and/or disabilities
 - Xue et al (2019): 48 items
 - Non-frail: < 0.2
 - Pre-frail: > 0.2 to < 0.35
 - Frail: > 0.35
- Limitation as used generally requires a comprehensive geriatric assessment

FRAIL Scale

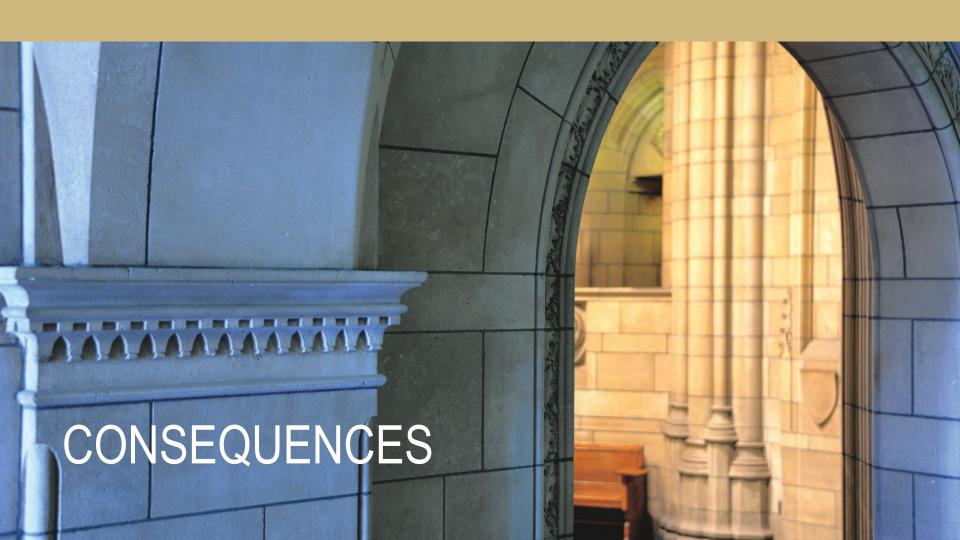
- Simple tool
 - May be more useful clinically

Symptom/Sign	Assessment
Fatigue	Are you fatigued?
Resistance	Cannot walk up one flight of stairs?
Ambulation	Cannot walk a block?
Illnesses	Do you have more than 5 illnesses
Loss of weight	Have you lost > 5% of your weight in the past 6 months?

No positive response =
robust (not frail)
1-2 positive responses =
pre-frail
3 or more positive
response = frail

· NEWS CLASSIFICATION OF IT

Frailty


- Prevalence varies by
 - Setting
 - How frailty is operationalized

Prevalence of Frailty

- Community: 2012 systematic review (Collard et al.)
 - 21 studies (61,500 older individuals)
 - Various measures of frailty
 - Wide variation in prevalence: 4.0 59.1%
 - Overall weighted prevalence
 - 10.7% for frailty (21 studies)
 - 41.6% for pre-frailty (15 studies)
 - Weighted prevalence higher in women (9.6%) than men (5.2%) (11 studies)
 - Prevalence increased with age (4 studies): 15.7% in those 80-84 years and 26.1% in those ≥ 85 years

Prevalence of Frailty

- Acute care settings: 2018 scoping review (Theou et al.)
 - 617 studies on frailty
 - Conducted on various types of units
 - Most (67%) did not report how measured
 - 122 reported prevalence
 - Median prevalence varied by unit/department: 34% to 69%

Frailty: Negative Outcomes

- Falls
 - Risk of falling 1.7 higher (2016 Systematic review with 6 studies;
 Vermeiren et al.)
 - Almost 3 times higher risk of fractures
- Acute illnesses
 - Delirium
 - Post-operative complications
- Functional decline and disability
 - Risk of developing ADL disabilities increased by nearly 2 (Vermeiren et al.)

Frailty: Negative Outcomes

Hospitalization

- 2016 systematic review (Kojima): frailty was a significant predictor of hospitalization among community-dwelling elders
- 2016 Systematic review (11 studies; Vermeiren et al.): likelihood of hospitalization was twice as high
- Significantly longer length of stay

Institutionalization

- 2016 Systematic review (5 studies; Vermeiren et al.) risk of institutionalization was 1.7 times higher
- Mortality: numerous studies
 - 2016 Systematic review (24 studies): likelihood of premature mortality 2.3 times higher (Vermeiren et al.)
 - Higher risk after controlling for multimorbidity (Zucchelli et al.)

Other Outcomes

- Cognitive impairment
 - 2019 systematic review (Borges et al.): baseline frailty was associated with nearly two times greater likelihood of cognitive impairment compare to non-frail older adults
- Depression
 - 2017 systematic review (Soysal et al.)
 - Prevalence of depression: 38.6%
 - Odds of depression was 4 times higher

NP Care

- Recognition of the frail and pre-frail patient
 - The older adult at risk for adverse outcomes
- Comprehensive assessment to Identify and effectively manage potential triggers
- Early implementation of supportive interventions with the goal of preventing pre-frailty from progressing to frailty or acceleration of frailty

Supportive Interventions

- Goals: to prevent loss of muscle mass and improve energy and strength
 - Early intervention to address triggers particularly
 - Low activity
 - Inadequate nutrition
 - Medications that may contribute to frailty or trigger events

Exercise

- Several systematic reviews provide support for exercise interventions
 - 2012 (Chou et al.): compared to usual care, frail elders participating in an exercise intervention had significant improvements in gait speed (4 studies), in balance (4 studies), and in performance of ADLs (3 studies)
 - 2015 (de Labra et al.): also examined the effect of exercise on
 - Muscle strength with 5 of 7 studies reporting improvement
 - Frailty (based of frailty phenotype): one study which reported significant improvement

Exercise

- 2017 (Vlietstra & Hendrickx) systematic review examined effect of exercise interventions of sarcopenia (one sign of frailty)
 - No significant improvement in total body muscle mass (3 studies)
 - Significant improvement in appendicular lean muscle mass (2 studies)
 - Significant improvement in leg muscle mass (2 studies)

Exercise: Focus on Resistance Training

- 2018 Systemic review (Lopez et al.): resistance training alone or as part of multimodal exercise program
 - Muscle mass: improved form 3.5% to 7.5% after 12 weeks (2 studies); no difference in 3 studies
 - Muscle strength: significant improvements in lower extremity strength in 8 or 12 studies
 - Gait speed: improved in 5 of 8 studies
 - Falls: significant reduction in 3 of 4 studies

Nutrition

- 2017 Systematic review (Lopez et al.) provided evidence on the role of nutrition in frailty
 - Micronutrient deficiencies
 - Protein intake
 - Overall dietary quality
 - Mediterranean diet score
- Limited intervention studies
 - Effect of protein supplementation may be protective but little evidence about treatment
 - Even less evidence on micronutrient supplementation

Multi-Domain Interventions

- Interventions targeting more than one factor contributing to frailty
- 2017 Systematic review (Dedeyne et al.)
 - Targeted > 2 domains (exercise, nutrition, pharmacological, psychological or social)
 - 12 studies
 - Overall, multi-domain interventions were more effective than those targeting a single domain in relation to frailty status, muscle mass and strength and physical functioning
 - Exercise seemed to play an essential role in multi-domain interventions.

Pharmacologic Interventions for Frailty?

- Very little research
 - Angiotensin converting enzyme inhibitors may halt or slow decline in muscle strength in old age
 - Use of Vitamin D is controversial
 - Studies examining senolytic drugs (selectively eliminate senescent cells)
- Currently no effective pharmacologic interventions

Consider Vulnerability to Stressors

- The increased vulnerability of frail elders to stressors needs to be considered in the manage of other comorbid health issues
 - The risk-benefit ratio of treating chronic health problems (e.g., hypertension) needs to be carefully considered
 - The use of high-risk medications should be minimized

Potential to Prevent Frailty

- Although there are potential target, e.g., preserving muscle mass, maintaining strength and optimal nutritional status
 - There is a lack of research on interventions to prevent frailty

- Borges, MK, Canevelli, M, Cesari, M, Aprahamian, I. Frailty as a predictor of cognitive disorders: A systematic review and meta-analysis. Frontiers in Medicine 2019; 6: 26.
- Cesari, M, Calvani, R, Marzetti, E. Frailty in older persons. Clinics in Geriatric Medicine 2017; 33: 293-303.
- Cesari, M, Prince, M, Thiyagarajan, JA, De Cavalho, IA, et al. Frailty: An emerging public health priority. JAMDA 2016; 17: 188-192.
- Chou, CH, Hwang, CL, Wu, YT. Effect of exercise on physical function, daily living activities, and quality of life in the frail older adults: A meta-analysis. *Archives of Physical Medical Rehabilitation* 2012: 93: 237-244.
- Clegg, A, Young, J, Lliffe, S, Rikkert, MO, Rockwood, K. Frailty in elderly people. Lancet 2013; 381: 752-762.
- Collard, RM, Boter, H, Schoevers, RA, Voshaar, RCO. Prevalence of frailty in community-dwelling older persons: A systematic review. JAGS 2012; 60: 1487-1492.
- Dedeyne, L, Deschodt, M., Verschueren, S. Tournoy, J, Gielen, E. Effect of multi-domain interventions in (pre) frail elderly on frailty, function and cognitive status: A systematic review. *Clinical Interventions in Aging* 2017; 12: 873-896.

- deLabra, C, Guimaraes-Pinheiro, C, Maseda, A, Lorenzo, T, Millan-Calenti. Effect of physical exercise interventions in frail older adults: A systematic review of randomized controlled trials. *BMC Geriatrics* 2015; 15: 154-170.
- Faller, JW, Pereira, DN, de Souza, S, Nampo, FK, Orlandi, FS, Matumoto, S. Instruments for the detection of frailty syndrome in older adults: A systematic review. *PLoS ONE* 2019; 14(4): e0216166.
- Fried, LP, Tangen, CM, Walson, J et al. Frailty in older adults: Evidence for a phenotype. Journal of Gerontology Medical Sciences 2001; 56A: M146-M156.
- Fried, LP, Walston, J. Approach to the frail elderly patient. In Ed. Humes, D. *Kelley's Textbook of Internal Medicine 4th ed.* 2000. Philadelphia: Lippincott Williams & Wilkins.
- Kojima, G. Frailty as a predictor of hospitalization among community-dwelling older people: A systematic review and meta-analysis. *Journal of Epidemiology and Community Health* 2016; 70: 722-729.
- Lopez, P, Pinto, RS, Radaelli, R, et al. Benefits of resistance training in physically frail elderly: A systematic review. *Aging Clinical and Experimental Research* 2018; 30: 889-899.
- Lorenzo-Lopez, L. Maseda, A, deLabra, C, Regueiro-Folgueira, L, Rodriquez-Vollamil, JL, Millan-Calenti, JC.
 Nutritional determinants of frailty in older adults: A systematic review. BMC Geriatrics 2017; 17: 108-121.

- Morante, JJH, Martinez, CG, Morillas-Ruiz, JM. Dietary factors associated with frailty in older adults: A
 review of nutritional interventions to prevent frailty development. Nutrients 2019; 11, 102.
- Oakland, K, Nadler, R, Cresswell, L, Jackson, D, Coughlin, PA. Systematic review and meta-analysis of the association between frailty and outcomes in surgical patients. *Annals of The Royal College of Surgeons of England* 2016; 98:8—85.
- Rockwood, K, Howlett, SE. Fifteen years of progress in understanding frailty and health in aging. *BMC Geriatrics* 2018; 16: 220-224.
- Rockwood, K, Song, X, MacKnight, C, et al. A global clinical measure of fitness and frailty in elderly people. CMAJ 2005; 173: 489-495.
- Soysal, P, Veronese, N, Thompson, T, et al. Relationship between depression and frailty in older adults: A systematic review and meta-analysis. *Ageing Research Reviews* 2017: 36: 78-87.
- Theou, O, Squires, E,, Mallery, K et al. What do we know about frailty in the acute care setting? A scoping review. *BMC Geriatrics* 2018: 18: 139.
- Verloo, H, Goulet, C, Morin, D, von Gunten, A. Association between frailty and delirium in older adult patients discharged from hospital. Clinical Interventions in Aging 2016; 11: 55-63.

- Vermeiren, s, Vella-Azzopardi, R, Beckwee, D et al. on behalf of the Gerontopole Brussels Study group. Frailty and the prediction of negative health outcomes: A meta-analysis. *JAMDA* 2016; 17: 1163.e1-1163.e17.
- Vlietstra, L. Hendrickx, W. Exercise interventions in healthy older adults with sarcopenia: A systematic review and meta-analysis. *Australasian Journal of Ageing* 2018: 37: 169-183.
- Xue, QL, Tian, J, Walston, JD, Chaves, PHM, Newman, AB, Bandeen-Roche, K. Discrepancy in frailty identification: Move beyond predictive validity, *Journal of Gerontology: Medical Sciences* 2019; XX: 1-7.
- Zucchelli, A, Vetrano, DL, Marengoni, A, et al. Frailty predicts short-term survival even in older adults without multimorbidity. *European Journal of Internal Medicine* 2018; 56: 53-56.